Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
EBioMedicine ; 103: 105126, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38631091

ABSTRACT

BACKGROUND: This study investigates the associations between air pollution and colorectal cancer (CRC) risk and survival from an epigenomic perspective. METHODS: Using a newly developed Air Pollutants Exposure Score (APES), we utilized a prospective cohort study (UK Biobank) to investigate the associations of individual and combined air pollution exposures with CRC incidence and survival, followed by an up-to-date systematic review with meta-analysis to verify the associations. In epigenetic two-sample Mendelian randomization analyses, we examine the associations between genetically predicted DNA methylation related to air pollution and CRC risk. Further genetic colocalization and gene-environment interaction analyses provided different insights to disentangle pathogenic effects of air pollution via epigenetic modification. FINDINGS: During a median 12.97-year follow-up, 5767 incident CRC cases among 428,632 participants free of baseline CRC and 533 deaths in 2401 patients with CRC were documented in the UK Biobank. A higher APES score was associated with an increased CRC risk (HR, 1.03, 95% CI = 1.01-1.06; P = 0.016) and poorer survival (HR, 1.13, 95% CI = 1.03-1.23; P = 0.010), particularly among participants with insufficient physical activity and ever smokers (Pinteraction > 0.05). A subsequent meta-analysis of seven observational studies, including UK Biobank data, corroborated the association between PM2.5 exposure (per 10 µg/m3 increment) and elevated CRC risk (RR,1.42, 95% CI = 1.12-1.79; P = 0.004; I2 = 90.8%). Genetically predicted methylation at PM2.5-related CpG site cg13835894 near TMBIM1/PNKD and cg16235962 near CXCR5, and NO2-related cg16947394 near TMEM110 were associated with an increased CRC risk. Gene-environment interaction analysis confirmed the epigenetic modification of aforementioned CpG sites with CRC risk and survival. INTERPRETATION: Our study suggests the association between air pollution and CRC incidence and survival, underscoring the possible modifying roles of epigenomic factors. Methylation may partly mediate pathogenic effects of air pollution on CRC, with annotation to epigenetic alterations in protein-coding genes TMBIM1/PNKD, CXCR5 and TMEM110. FUNDING: Xue Li is supported by the Natural Science Fund for Distinguished Young Scholars of Zhejiang Province (LR22H260001), the National Nature Science Foundation of China (No. 82204019) and Healthy Zhejiang One Million People Cohort (K-20230085). ET is supported by a Cancer Research UK Career Development Fellowship (C31250/A22804). MGD is supported by the MRC Human Genetics Unit Centre Grant (U127527198).

2.
EBioMedicine ; 101: 105033, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38382313

ABSTRACT

BACKGROUND: Coeliac disease (CeD) has been associated with a broad range of diseases in observational data; however, whether these associations are causal remains undetermined. We conducted a phenome-wide Mendelian randomization analysis (MR-PheWAS) to investigate the comorbidities of CeD. METHODS: Single nucleotide polymorphisms (SNPs) associated with CeD at the genome-wide significance threshold and without linkage disequilibrium (R2 <0.001) were selected from a genome-wide association study including 12,041 CeD cases as the instrumental variables. We first constructed a polygenic risk score for CeD and estimated its associations with 1060 unique clinical outcomes in the UK Biobank study (N = 385,917). We then used two-sample MR analysis to replicate the identified associations using data from the FinnGen study (N = 377,277). We performed a secondary analysis using a genetic instrument without extended MHC gene SNPs. FINDINGS: Genetic liability to CeD was associated with 68 clinical outcomes in the UK Biobank, and 38 of the associations were replicated in the FinnGen study. Genetic liability to CeD was associated with a higher risk of several autoimmune diseases (type 1 diabetes and its complications, Graves' disease, Sjögren syndrome, chronic hepatitis, systemic and cutaneous lupus erythematosus, and sarcoidosis), non-Hodgkin's lymphoma, and osteoporosis and a lower risk of prostate diseases. The associations for type 1 diabetes and non-Hodgkin's lymphoma attenuated when excluding SNPs in the MHC region, indicating shared genetic aetiology. INTERPRETATION: This study uncovers multiple clinical outcomes associated with genetic liability to CeD, which suggests the necessity of comorbidity monitoring among this population. FUNDING: This project was funded by Karolinska Institutet and the Swedish Research Council.

3.
J Natl Cancer Inst ; 116(4): 565-573, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38039160

ABSTRACT

BACKGROUND: The proteome is an important reservoir of potential therapeutic targets for cancer. This study aimed to examine the causal associations between plasma proteins and cancer risk and to identify proteins with cross-cancer effects. METHODS: Genetic instruments for 3991 plasma proteins were extracted from a large-scale proteomic study. Summary-level data of 13 site-specific cancers were derived from publicly available datasets. Proteome-wide Mendelian randomization and colocalization analyses were used to investigate the causal effect of circulating proteins on cancers. Protein-protein interactions and druggability assessment were conducted to prioritize potential therapeutic targets. Finally, systematical Mendelian randomization analysis between healthy lifestyle factors and cancer-related proteins was conducted to identify which proteins could act as interventional targets by lifestyle changes. RESULTS: Genetically determined circulating levels of 58 proteins were statistically significantly associated with 7 site-specific cancers. A total of 39 proteins were prioritized by colocalization, of them, 11 proteins (ADPGK, CD86, CLSTN3, CSF2RA, CXCL10, GZMM, IL6R, NCR3, SIGLEC5, SIGLEC14, and TAPBP) were observed to have cross-cancer effects. Notably, 5 of these identified proteins (CD86, CSF2RA, CXCL10, IL6R, and TAPBP) have been targeted for drug development in cancer therapy; 8 proteins (ADPGK, CD86, CXCL10, GZMM, IL6R, SIGLEC5, SIGLEC14, TAPBP) could be modulated by healthy lifestyles. CONCLUSION: Our study identified 39 circulating protein biomarkers with convincing causal evidence for 7 site-specific cancers, with 11 proteins demonstrating cross-cancer effects, and prioritized the proteins as potential intervention targets by either drugs or lifestyle changes, which provided new insights into the etiology, prevention, and treatment of cancers.


Subject(s)
Neoplasms , Proteome , Humans , Proteomics , Drug Development , Healthy Lifestyle , Mendelian Randomization Analysis , Neoplasms/drug therapy , Neoplasms/epidemiology , Neoplasms/genetics , Blood Proteins , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Calcium-Binding Proteins , Membrane Proteins
4.
Nutrients ; 15(22)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38004195

ABSTRACT

BACKGROUND: Both genetic and dietary factors play significant roles in the etiology of colorectal cancer (CRC). To evaluate the relationship between certain food exposures and the risk of CRC, we carried out a large-scale association analysis in the UK Biobank. METHODS: The associations of 139 foods and nutrients' intake with CRC risk were assessed among 118,210 participants. A polygenic risk score (PRS) of CRC was created to explore any interaction between dietary factors and genetic susceptibility in CRC risk. The hazard ratio (HR) and 95% confidence interval (CI) of CRC risk linked to dietary variables and PRS were estimated using Cox regression models. Multiple comparisons were corrected using the error discovery rate (FDR). RESULTS: During a mean follow-up of 12.8 years, 1466 incidents of CRC were identified. In the UK Biobank, alcohol and white bread were associated with increased CRC risk, and their HRs were 1.08 (95% CI: 1.03-1.14; FDRP = 0.028) and 1.10 (95% CI: 1.05-1.16; FDRP = 0.003), whereas dietary fiber, calcium, magnesium, phosphorus, and manganese intakes were inversely associated. We found no evidence of any PRS-nutrient interaction relationship in relation to CRC risk. CONCLUSIONS: Our results show that higher intakes of alcohol and white bread are associated with increased CRC risk, whilst dietary fiber, calcium, magnesium, phosphorus, and manganese are inversely associated.


Subject(s)
Calcium , Colorectal Neoplasms , Humans , Prospective Studies , Magnesium , Manganese , Genetic Predisposition to Disease , Diet/adverse effects , Risk Factors , Dietary Fiber , Calcium, Dietary , Colorectal Neoplasms/etiology , Colorectal Neoplasms/genetics , Phosphorus
6.
J Phys Chem Lett ; 14(41): 9310-9315, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37818819

ABSTRACT

In this work, we study the kinetics of photoinduced halide migration in FA0.8Cs0.2Pb(I0.8Br0.2)3 wide (∼1.69 eV) bandgap perovskites and show that halide migration slows down following surface passivation with (3-aminopropyl) trimethoxysilane (APTMS). We use scanning Kelvin probe microscopy (SKPM) to probe the contact potential difference (CPD) shift under illumination and the kinetics of surface potential relaxation in the dark. Our results show that APTMS-passivated perovskites exhibit a smaller CPD shift under illumination and a slower surface potential relaxation in the dark. We compare the evolution of the photoluminescence spectra of APTMS-passivated and unpassivated perovskites under illumination. We find that APTMS-passivated perovskites exhibit more than 5 times slower photoluminescence red-shift, consistent with the slower surface potential relaxation as observed by SKPM. These observations provide evidence for kinetic suppression of photoinduced halide migration in APTMS-passivated samples, likely due to reduced halide vacancy densities, opening avenues to more efficient and stable devices.

7.
Genome Med ; 15(1): 75, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37726845

ABSTRACT

BACKGROUND: The proteome is a major source of therapeutic targets. We conducted a proteome-wide Mendelian randomization (MR) study to identify candidate protein markers and therapeutic targets for colorectal cancer (CRC). METHODS: Protein quantitative trait loci (pQTLs) were derived from seven published genome-wide association studies (GWASs) on plasma proteome, and summary-level data were extracted for 4853 circulating protein markers. Genetic associations with CRC were obtained from a large-scale GWAS meta-analysis (16,871 cases and 26,328 controls), the FinnGen cohort (4957 cases and 304,197 controls), and the UK Biobank (9276 cases and 477,069 controls). Colocalization and summary-data-based MR (SMR) analyses were performed sequentially to verify the causal role of candidate proteins. Single cell-type expression analysis, protein-protein interaction (PPI), and druggability evaluation were further conducted to detect the specific cell type with enrichment expression and prioritize potential therapeutic targets. RESULTS: Collectively, genetically predicted levels of 13 proteins were associated with CRC risk. Elevated levels of two proteins (GREM1, CHRDL2) and decreased levels of 11 proteins were associated with an increased risk of CRC, among which four (GREM1, CLSTN3, CSF2RA, CD86) were prioritized with the most convincing evidence. These protein-coding genes are mainly expressed in tissue stem cells, epithelial cells, and monocytes in colon tumor tissue. Two interactive pairs of proteins (GREM1 and CHRDL2; MMP2 and TIMP2) were identified to be involved in osteoclast differentiation and tumorigenesis pathways; four proteins (POLR2F, CSF2RA, CD86, MMP2) have been targeted for drug development on autoimmune diseases and other cancers, with the potentials of being repurposed as therapeutic targets for CRC. CONCLUSIONS: This study identified several protein biomarkers to be associated with CRC risk and provided new insights into the etiology and promising targets for the development of screening biomarkers and therapeutic drugs for CRC.


Subject(s)
Colorectal Neoplasms , Proteome , Humans , Matrix Metalloproteinase 2 , Genome-Wide Association Study , Biomarkers , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Calcium-Binding Proteins , Membrane Proteins , Extracellular Matrix Proteins
8.
Br J Cancer ; 129(8): 1306-1313, 2023 10.
Article in English | MEDLINE | ID: mdl-37608097

ABSTRACT

BACKGROUND: Tobacco smoking is suggested as a risk factor for colorectal cancer (CRC), but the complex relationship and the potential pathway are not fully understood. METHODS: We performed two-sample Mendelian randomisation (MR) analyses with genetic instruments for smoking behaviours and related DNA methylation in blood and summary-level GWAS data of colorectal cancer to disentangle the relationship. Colocalization analyses and prospective gene-environment interaction analyses were also conducted as replication. RESULTS: Convincing evidence was identified for the pathogenic effect of smoking initiation on CRC risk and suggestive evidence was observed for the protective effect of smoking cessation in the univariable MR analyses. Multivariable MR analysis revealed that these associations were independent of other smoking phenotypes and alcohol drinking. Genetically predicted methylation at CpG site cg17823346 [ZMIZ1] were identified to decrease CRC risk; while genetically predicted methylation at cg02149899 would increase CRC risk. Colocalization and gene-environment interaction analyses added further evidence to the relationship between epigenetic modification at cg17823346 [ZMIZ1] as well as cg02149899 and CRC risk. DISCUSSION: Our study confirms the significant association between tobacco smoking, DNA methylation and CRC risk and yields a novel insight into the pathogenic effect of tobacco smoking on CRC risk.


Subject(s)
Colorectal Neoplasms , Smoking , Humans , Smoking/adverse effects , DNA Methylation , Prospective Studies , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Tobacco Smoking , Genome-Wide Association Study , Polymorphism, Single Nucleotide
9.
Clin Nutr ; 42(9): 1788-1797, 2023 09.
Article in English | MEDLINE | ID: mdl-37586315

ABSTRACT

BACKGROUND: Dietary advanced glycation end products (AGEs) might exert adverse effects on cognition. The associations between dietary AGEs and long-term risk of dementia are yet to be assessed in large population studies. We aimed to explore whether elevated dietary AGEs intake is associated with increased risk of dementia, and whether this association might be affected by genetic risk. METHODS: A prospective cohort study, which included a total of 93,830 participants (aged≥ 50 years) free from dementia at baseline of the UK Biobank study (2006-2010) and had at least two 24-h dietary assessments and were followed up until 2021. Dietary AGEs, including Nε-(1-Carboxyethyl)-l-lysine (CEL), Nε-(carboxymethyl) lysine (CML), and Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MG-H1) were estimated via averaged data from the multiple 24-h food assessments according to the ultra-performance LC-tandem MS based dAGEs database. Incidence of all-cause dementia was ascertained through hospital inpatient and mortality records. Multivariable Cox regression models were utilized to estimate hazards ratios (HRs) and 95% confidence interval (CI) of dementia risk associated with dietary AGEs. RESULTS: During a median follow-up of 11.9 years, 728 participants developed dementia. In multivariable adjusted model, when comparing the highest with the lowest tertile of intake level, HRs (95% CI) of dementia were 1.43 (1.16, 1.76) for total AGEs Z score, 1.53 (1.25, 1.89) for CEL, 1.27 (1.03, 1.56) for CML and 1.24 (1.02, 1.52) for MG-H1 (all P trend<0.01). There was no significant interaction between dietary AGEs intake, genetic risk and APOE ε4 carrier status for dementia. CONCLUSIONS: Higher intakes of dietary AGEs including CEL, CML and MG-H1 were associated with a higher risk of dementia, independent from genetic risk, highlighting the significance of dietary AGEs restriction for dementia prevention.


Subject(s)
Dementia , Glycation End Products, Advanced , Humans , Maillard Reaction , Genetic Predisposition to Disease , Prospective Studies , Dietary Advanced Glycation End Products , Dementia/epidemiology , Dementia/genetics
10.
Int J Cancer ; 153(9): 1602-1611, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37504220

ABSTRACT

Early-onset colorectal cancer (EOCRC) has been increasing worldwide. Potential risk factors may have occurred in childhood or adolescence. We investigated the associations between early-life factors and EOCRC risk, with a particular focus on long-term or recurrent antibiotic use (LRAU) and its interaction with genetic factors. Data on the UK Biobank participants recruited between 2006 and 2010 and followed up to February 2022 were used. We used logistic regression to estimate adjusted odds ratios (ORs) and 95% confidence intervals (95% CIs) of the associations between LRAU during early life and EOCRC risk overall and by polygenic risk score (constructed by 127 CRC-related genetic variants) and Fucosyltransferase 2 (FUT2), a gut microbiota regulatory gene. We also assessed the associations for early-onset colorectal adenomas, as precursor lesion of CRC, to examine the effect of LRAU during early-life and genetic factors on colorectal carcinogenesis. A total of 113 256 participants were included in the analysis, with 165 EOCRC cases and 719 EOCRA cases. LRAU was nominally associated with increased risk of early-onset CRC (OR = 1.48, 95% CI = 1.01-2.17, P = .046) and adenomas (OR = 1.40, 95% CI = 1.17-1.68, P < .001). When stratified by genetic polymorphisms of FUT2, LRAU appeared to confer a comparatively greater risk for early-onset adenomas among participants with rs281377 TT genotype (OR = 1.10, 95% CI = 0.79-1.52, P = .587, for CC genotype; OR = 1.75, 95% CI = 1.16-2.64, P = .008, for TT genotype; Pinteraction = .089). Our study suggested that LRAU during early life is associated with increased risk of early-onset CRC and adenomas, and the association for adenomas is predominant among individuals with rs281377 TT/CT genotype. Further studies investigating how LRAU contributes together with genetic factors to modify EOCRC risk, particularly concerning the microbiome-related pathway underlying colorectal carcinogenesis, are warranted.


Subject(s)
Adenoma , Colorectal Neoplasms , Humans , Genotype , Colorectal Neoplasms/genetics , Risk Factors , Adenoma/genetics , Carcinogenesis , Galactoside 2-alpha-L-fucosyltransferase
11.
Environ Health Perspect ; 131(7): 77010, 2023 07.
Article in English | MEDLINE | ID: mdl-37505744

ABSTRACT

BACKGROUND: Previous studies indicated that air pollution plausibly increases the risk of adverse outcomes in inflammatory bowel disease (IBD) via proinflammatory mechanisms. However, there is scant epidemiological data and insufficient prospective evidence assessing associations between ambient air pollution and clinical outcomes of IBD. OBJECTIVES: We aimed to investigate the associations between ambient air pollution and clinical outcomes among individuals with IBD. METHODS: Leveraging data from the UK Biobank, we included 4,708 individuals with IBD recruited in the period 2006-2010 in this study. A land use regression model was used to assess annual mean concentrations of ambient air pollutants nitrogen including oxides (NOx), nitrogen dioxide (NO2), and particulate matter (PM) with aerodynamic diameter ≤10µm (PM10) and PM with aerodynamic diameter ≤2.5µm (PM2.5). Individuals with IBD were followed up for incident clinical outcomes of enterotomy, gastrointestinal cancer, and all-cause mortality, ascertained via death registry, inpatient, primary care, and cancer registry data. Cox proportional hazard model was used to estimate hazard ratios (HRs) with 95% confidence intervals (CIs) for the magnitude of the associations. RESULTS: During a mean follow-up of 12.0 y, 265 enterotomy events, 124 incident gastrointestinal cancer, and 420 death events were documented among individuals with IBD. We found that each interquartile range (IQR) increase in exposure to PM2.5 was associated with increased risk of enterotomy (HR=1.16; 95% CI: 1.00, 1.34, p=0.043), whereas an IQR increase in exposure to NOx (HR=1.10; 95% CI: 1.01, 1.20, p=0.016), NO2 (HR=1.16; 95% CI: 1.03, 1.29, p=0.010), PM10 (HR=1.15; 95% CI: 1.03, 1.30, p=0.015), and PM2.5 (HR=1.14; 95% CI: 1.02, 1.28, p=0.019) was associated with increased risk of all-cause mortality among individuals with IBD. We did not observe any significant associations between air pollutants and gastrointestinal cancer in the primary analyses. Consistent results were observed in subgroup and sensitivity analyses. CONCLUSIONS: Ambient pollution exposure was associated with an increased risk of enterotomy and all-cause mortality among individuals with IBD, highlighting the important role of environmental health in improving the prognosis of IBD. https://doi.org/10.1289/EHP12215.


Subject(s)
Air Pollutants , Air Pollution , Gastrointestinal Neoplasms , Inflammatory Bowel Diseases , Humans , Prospective Studies , Environmental Exposure/analysis , Air Pollution/analysis , Air Pollutants/analysis , Particulate Matter/analysis , Nitrogen Dioxide/analysis , Inflammatory Bowel Diseases/epidemiology , Inflammatory Bowel Diseases/chemically induced , Gastrointestinal Neoplasms/epidemiology
12.
Cancer Epidemiol Biomarkers Prev ; 32(8): 1048-1060, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37220872

ABSTRACT

BACKGROUND: To systematically appraise and synthesize available epidemiologic evidence on the associations of environmental and genetic factors with the risk of sporadic early-onset colorectal cancer (EOCRC) and early-onset advanced colorectal adenoma (EOCRA). METHODS: Multiple databases were comprehensively searched to identify eligible observational studies. Genotype data from UK Biobank were incorporated to examine their associations with EOCRC in a nested case-control design. Meta-analyses of environmental risk factors were performed, and the strength of evidence was graded based on predefined criteria. Meta-analyses of genetic associations were conducted using the allelic, recessive, and dominant models, respectively. RESULTS: A total of 61 studies were included, reporting 120 environmental factors and 62 genetic variants. We found 12 risk factors (current overweight, overweight in adolescence, high waist circumference, smoking, alcohol, sugary beverages intake, sedentary behavior, red meat intake, family history of colorectal cancer, hypertension, hyperlipidemia, and metabolic syndrome) and three protective factors (vitamin D, folate, and calcium intake) for EOCRC or EOCRA. No significant associations between the examined genetic variants and EOCRC risk were observed. CONCLUSIONS: Recent data indicate that the changing patterns of traditional colorectal cancer risk factors may explain the rising incidence of EOCRC. However, research on novel risk factors for EOCRC is limited; therefore, we cannot rule out the possibility of EOCRC having different risk factors than late-onset colorectal cancer (LOCRC). IMPACT: The potential for the identified risk factors to enhance the identification of at-risk groups for personalized EOCRC screening and prevention and for the prediction of EOCRC risk should be comprehensively addressed by future studies.


Subject(s)
Adenoma , Colorectal Neoplasms , Adolescent , Humans , Adenoma/etiology , Adenoma/genetics , Colorectal Neoplasms/etiology , Colorectal Neoplasms/genetics , Overweight , Risk Factors , Smoking/epidemiology , Observational Studies as Topic
13.
Int J Biol Macromol ; 239: 124303, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37019204

ABSTRACT

A new N, S-CQDs@Fe3O4@HTC composite was prepared by loading N, S carbon quantum dots (N, S-CQDs) derived from lignin on magnetic hydrotalcite (HTC) via an in-situ growth method. The characterization results showed that the catalyst had a mesoporous structure. These pores facilitate the diffusion and mass transfer of pollutant molecules inside the catalyst, allowing them to approach the active site smoothly. The catalyst performed well in the UV degradation of Congo red (CR) over a wide pH range (3-11), with efficiencies over 95.43 % in all cases. Even at a high NaCl content (100 g/L), the catalyst showed extraordinary CR degradation (99.30 %). ESR analysis and free radical quenching experiments demonstrated that OH and O2- were the main active species governing CR degradation. Besides, the composite had outstanding removal efficiency for Cu2+ (99.90 %) and Cd2+ (85.08 %) simultaneously due to the electrostatic attraction between the HTC and metal ions. Moreover, the N, S-CQDs@Fe3O4@HTC had excellent stability and recyclability during five cycles, making it free of secondary contamination. This work provides a new environment-friendly catalyst for the simultaneous removal of multiple pollutants and a waste-to-waste strategy for the value-added utilization of lignin.


Subject(s)
Metals, Heavy , Quantum Dots , Quantum Dots/chemistry , Lignin , Congo Red , Carbon/chemistry , Magnetic Phenomena , Hydrogen-Ion Concentration
14.
Nutrients ; 15(3)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36771436

ABSTRACT

BACKGROUND: Increasingly, studies have discovered that different fatty acids (Fas) are linked to colorectal cancer (CRC) risk. METHODS: We systematically searched Embase and Medline databases to identify eligible studies that examined the associations of different types of Fas with CRC risk. The effect estimates and their 95% confidence intervals (Cis) were pooled using a random-effects model. Subgroup and sensitivity analyses were performed to examine the robustness of the study findings. RESULTS: This study evaluated the associations of 28 dietary and 18 blood Fas with CRC risk by summarizing the most updated evidence from 54 observational and four Mendelian Randomization (MR) studies. The present findings suggested that high dietary intake of eicosapentaenoic acid (EPA), docosahexanoic acid (DHA), and docosapentaenoic acid (DPA) are related to low risk of CRC, while the n-6/n-3 PUFA ratio and trans-FA are related to high risk of CRC. The summary of all cohort studies found that a high intake of SFA and DHA was a protective factor for CRC, and a high intake of the n-6/n-3 PUFA ratio was a risk factor for CRC. In the subgroup analysis of cancer subsites, we found that the dietary intake of linoleic acid (LA) and trans-FA are risk factors, while DPA is a protective factor for colon cancer. High dietary DHA intake was associated with a lower risk of rectal cancer, while the dietary n-6/n-3 PUFA ratio was associated with a higher risk of rectal cancer. Meta-analysis of blood FA levels showed a significant reverse association between blood pentadecanoic acid and CRC risk, whilst other blood Fas showed no significant association with CRC risk. All included MR studies showed that high plasma arachidonic acid (AA) is associated with increased CRC risk. CONCLUSIONS: Current evidence on the dietary intake and blood levels of Fas in relation to CRC risk is less consistent. Future studies are needed to investigate how the metabolism of Fas contributes to CRC development.


Subject(s)
Colorectal Neoplasms , Fatty Acids, Omega-3 , Rectal Neoplasms , Humans , Fatty Acids , Eating , Risk Factors , Colorectal Neoplasms/epidemiology , Colorectal Neoplasms/etiology , Observational Studies as Topic
15.
Science ; 379(6633): 690-694, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36795809

ABSTRACT

Lewis base molecules that bind undercoordinated lead atoms at interfaces and grain boundaries (GBs) are known to enhance the durability of metal halide perovskite solar cells (PSCs). Using density functional theory calculations, we found that phosphine-containing molecules have the strongest binding energy among members of a library of Lewis base molecules studied herein. Experimentally, we found that the best inverted PSC treated with 1,3-bis(diphenylphosphino)propane (DPPP), a diphosphine Lewis base that passivates, binds, and bridges interfaces and GBs, retained a power conversion efficiency (PCE) slightly higher than its initial PCE of ~23% after continuous operation under simulated AM1.5 illumination at the maximum power point and at ~40°C for >3500 hours. DPPP-treated devices showed a similar increase in PCE after being kept under open-circuit conditions at 85°C for >1500 hours.

16.
Int J Biol Macromol ; 230: 123120, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36603724

ABSTRACT

The presence of multiple pollutants in wastewater, often with complex interactions, poses a significant challenge for conventional membranes to effectively remove multiple pollutants simultaneously. Herein, a lignin microparticles-reinforced cellulose filter paper (FP@AL-LS-DA) was fabricated via an aldol condensation between lignin and cellulose filter paper and cross-linking with dopamine hydrochloride (DA), which showed desired rejection of oil-in-water emulsions and dyes. Characterizations revealed that the addition of lignin and DA effectively narrowed the pore size (from 4.45 µm to 2.01 µm) and enhanced the rigidity and stability of the cellulose filter paper, thus making it not easily damaged in the water environment and showing excellent tolerance to strong acid and high-salt environments. The oil-in-water emulsions removal efficiency was higher than 99 % even after ten times usage, and the oil flux was kept stable at 52.54 L·m-2·h-1, indicating that FP@AL-LS-DA had outstanding reusability and stability. Remarkably, FP@AL-LS-DA showed excellent removal efficiency (>99 %) for complex pollutants containing dyes and oil-in-water emulsions. In this work, we demonstrate a lignin microparticles-reinforced cellulose filter paper that is simple to prepare and can efficiently separate oil-in-water emulsions and remove dyes.


Subject(s)
Cellulose , Environmental Pollutants , Lignin , Coloring Agents , Oils , Water , Emulsions
17.
Int J Biol Macromol ; 233: 123469, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36720330

ABSTRACT

Solar-driven interfacial evaporation has been considered one of the most promising approaches to tackle the issue of water scarcity. The salt resistance and water transport capacity of solar evaporation materials are essential to evaluate desalination performance. Herein, a 3D-porous N-doped lignosulfonate/graphene oxide (GO) aerogel (NLGA) was facilely prepared by a one-step hydrothermal method. By introducing ethylenediamine (EDA) as a nitrogen source, the wettability and water transport capacity of the aerogel were enhanced; by introducing lignosulfonate (LS), its porous structure was regulated, and its light absorption capability was significantly improved. The obtained aerogel exhibited an outstanding evaporation rate (1.57 kg m-2 h-1) and efficiency (95.2 %) under 1 sun illumination, which is significantly better than some reported foam-based solar evaporators. In addition, NLGA maintained a stable evaporation rate over long-term cyclic evaporation without visible salt accumulation on the surface. The good salt rejection performance is due to the rich-pore structure and superhydrophilicity of NGLA, which provides sufficient water supply to dissolve the salts during water evaporation. NLGA has enormous potential as a solar evaporator based on its excellent performance in solar vapor generation.


Subject(s)
Steam , Water , Porosity , Sodium Chloride
18.
BMC Med ; 20(1): 455, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36424608

ABSTRACT

BACKGROUND: We performed phenome-wide Mendelian randomization analysis (MR-PheWAS), two-sample MR analysis, and systemic review to comprehensively explore the health effects of milk consumption in the European population. METHODS: Rs4988235 located upstream of the LCT gene was used as the instrumental variable for milk consumption. MR-PheWAS analysis was conducted to map the association of genetically predicted milk consumption with 1081 phenotypes in the UK Biobank study (n=339,197). The associations identified in MR-PheWAS were examined by two-sample MR analysis using data from the FinnGen study (n=260,405) and international consortia. A systematic review of MR studies on milk consumption was further performed. RESULTS: PheWAS and two-sample MR analyses found robust evidence in support of inverse associations of genetically predicted milk consumption with risk of cataract (odds ratio (OR) per 50 g/day increase in milk consumption, 0.89, 95% confidence interval (CI), 0.84-0.94; p=3.81×10-5), hypercholesterolemia (OR, 0.91, 95% CI 0.86-0.96; p=2.97×10-4), and anal and rectal polyps (OR, 0.85, 95% CI, 0.77-0.94; p=0.001). An inverse association for type 2 diabetes risk (OR, 0.92, 95% CI, 0.86-0.97; p=0.003) was observed in MR analysis based on genetic data with body mass index adjustment but not in the corresponding data without body mass index adjustment. The systematic review additionally found evidence that genetically predicted milk consumption was inversely associated with asthma, hay fever, multiple sclerosis, colorectal cancer, and Alzheimer's disease, and positively associated with Parkinson's disease, renal cell carcinoma, metabolic syndrome, overweight, and obesity. CONCLUSIONS: This study suggests several health effects of milk consumption in the European population.


Subject(s)
Diabetes Mellitus, Type 2 , Kidney Neoplasms , Humans , Animals , Mendelian Randomization Analysis , Milk , Diabetes Mellitus, Type 2/epidemiology , Polymorphism, Single Nucleotide
19.
Metabolism ; 137: 155347, 2022 12.
Article in English | MEDLINE | ID: mdl-36396079

ABSTRACT

BACKGROUND: Lipoprotein(a) [Lp(a)] is a risk factor for atherosclerotic and valvular diseases, but its possible role in other diseases has not yet been established. We conducted phenome-wide Mendelian randomization and disease-trajectory analyses to assess any associations of circulating Lp(a) levels with a broad range of diseases. METHODS: A weighted polygenic risk score was constructed using independent genetic variants in the LPA gene and with an established effect on Lp(a) levels. The PheWAS analysis included 1081 phenotype outcomes ascertained among 385,917 White participants of the UK Biobank. Novel findings were investigated in MR analysis using data from the FinnGen consortium. Disease-trajectory and comorbidity analyses were further conducted to explore the sequential patterns of multiple morbidities related to high circulating Lp(a) levels. RESULTS: PheWAS revealed statistically significant associations of higher circulating Lp(a) levels with increased risk of a large number of circulatory system diseases (including various cardiac diseases, peripheral vascular disease, hypertension, and valvular and cerebrovascular diseases) as well as some endocrine/metabolic diseases (including hyperlipidemia, hypercholesterolemia, disorders of lipoid metabolism, and type 2 diabetes), genitourinary system diseases (renal failure), and hematologic diseases (including different types of anemia). Two-sample MR analysis supported the association between Lp(a) and risk of anemia, showed a suggestive association with type 2 diabetes, but found no association with renal failure. Disease-trajectory and comorbidity analyses identified 3 major sequential patterns of multiple morbidities, mainly in the cardiovascular, metabolic, and mental disorders, related to high circulating Lp(a) levels. CONCLUSIONS: Genetically predicted higher circulating Lp(a) levels were associated with increased risk of many circulatory system diseases and anemia. Additionally, this study identified three major sequential patterns of multiple morbidities related to high Lp(a).


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Lipoprotein(a) , Renal Insufficiency , Humans , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/genetics , Lipoprotein(a)/blood , Mendelian Randomization Analysis
20.
Carbohydr Polym ; 293: 119688, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35798437

ABSTRACT

Porous microsphere hemostatic materials, which possess rapid hemostatic, antibacterial, and wound healing-promotion properties, have key advantages over hemostatic dressings with a single hemostatic function. Using rod-shaped cellulose nanocrystals as the supporting framework, sodium alginate/cellulose nanocrystal porous microspheres (SA/CNC) were prepared using an inverse emulsion method. After SA/CNC self-assembly with the antibacterial polymer ε-polylysine, the hemostatic porous microspheres (PSLMs) showed high porosity, high liquid absorption capacity, and excellent coagulation properties. The in vitro and in vivo coagulation properties of PSLMs were evaluated and compared with those of the commercially available chitosan hemostatic powder. PSLMs had marked hemostatic effects in the following mouse hemorrhage models: caudal (81.20 s), liver (48.44 s), and femoral artery (71.66 s). After the introduction of ε-polylysine with excellent antibacterial properties to PSLMs, PSLMs effectively inhibited the activities of Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa.


Subject(s)
Chitosan , Hemostatics , Nanoparticles , Alginates/chemistry , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Cellulose/chemistry , Cellulose/pharmacology , Chitosan/chemistry , Chitosan/pharmacology , Escherichia coli , Hemostasis , Hemostatics/chemistry , Hemostatics/pharmacology , Hemostatics/therapeutic use , Mice , Microspheres , Polylysine/pharmacology , Porosity , Wound Healing
SELECTION OF CITATIONS
SEARCH DETAIL
...